Validation and Verification Of Molecular Diagnostic Tests

Gregory J. Tsongalis, Ph.D.

Professor of Pathology
Director, Molecular Pathology
Dartmouth Medical School
Dartmouth Hitchcock Medical Center
Norris Cotton Cancer Center
Lebanon, NH
The following information does not reflect the opinions of the College of American Pathologists or the U.S. Food and Drug Administration, they are only my interpretation of the regulations.
Why do we need new tests?

Translational Research

Basic Science

Technology

Molecular Pathology

Therapeutics

Clinical Medicine
The Human Genome Project

Introduced genetics to the public and increased the need for more molecular testing capabilities.
Promises of the Human Genome

Diagnostic - better
Prognostic - more powerful
Predictive - preventive
Therapeutic – more personalized
Clinical Laboratory Improvement Amendments

- Regulates all clinical testing in the U.S.
- Passed by Congress in 1988
- Published in 1992 and revised in 2003
- To ensure accuracy, reliability, and appropriateness of results
CLIA Recognizes Three Main Types of Tests

- FDA approved or cleared w/o modification
- FDA approved or cleared w/ modification
- Tests that are not FDA approved or cleared

Many molecular tests are not commercially available or FDA approved/cleared because the target is rare and the market is not profitable.
What is the molecular diagnostics playing field like?

- Many players
- Technical issues
- Clinical issues
- Operational issues
- Reimbursement issues
- Ethical issues
Some of the Players in Nucleic Acid Testing

- Affymetrix, Artel, Asuragen, Cepheid, Eragen, Hologic, Illumina, Luminex, OpGen, Primera Dx, Promega, Qiagen
- Invitrogen + Applied Biosystems (Life Technologies)
Where Does The New Test Request Come From?

- Recent article
- Recent meeting
- New program initiative at the institution
- Electronic media of one sort or another
Why Do These Requests Come?

- Genetics
 - identification of new diseases
 - previously unavailable tests
 - carrier detection/risk assessment
- Infectious diseases
 - difficult to culture organisms
 - quantitative analysis/genotyping
- Heme/Oncology
 - confirmation
 - minimal residual disease
 - therapeutics
- Identity testing
 - chimerism
 - parentage
 - specimen identification
 - twinship
- Pharmacogenomics
 - Metabolism
 - Targeted therapy

Clinical necessity
Does This New Test Have Value?

What is the mission of the institution?
- Hospital vs reference lab
- Academic vs private
- Small vs large
Does This New Test Have Value?

What type of patient population do you serve?

- Ethnicity/race
- Pediatric vs geriatric
- Outpatient vs inpatient
- Women’s health
Does This New Test Have Value?

Who is the client?

Patient/Family Provider Pathologist Payor
Does This New Test Have Value?

- Do we currently send this out?
- Do we have the equipment/staff?
- Can we meet the expected TAT?
- What is reimbursement like?
Staffing

Skill Level

Qualifications

Satisfaction

CME
Cost/Reimbursement

- Payor mix???
- Reimbursement?
- CPT coding
- Knowing when to negotiate pricing
- Test cost to the laboratory vs institution
The Pathway To Funding

Test coding

87491 Chlamydia trachomatis

Procedural or stacked coding

83890 Molecular isolation
83898 Amplification
83892 Enzymatic digestion
83894 Separation
What It Takes To Bring A New Test In House

Commitment Space Equipment Staff Start-up $$

You need a plan!
Why A New Test?
Laboratory Performance

Support Client? Analytical

Standards TAT
Why A New Test?
Analytical Performance

Standards
TAT

Clinical Interaction
Technologies
Specimen types
Why A New Test?

- Logistics & workflow
- Trendy science ≠ good diagnostics
- Cost
- Performance

Technologies
Trends In Molecular Diagnostic Technologies

- Cost
- Throughput
- TAT
Trends In Molecular Diagnostic Technologies

- Labor intense – more automated
- Low Throughput – mid to high throughput
- No Standardization - CLSI Guidelines
- Costly – Less expensive
- High complexity – More turn key
- Staffing – Less expertise required
Trends In Molecular Diagnostic Technologies

SNP Genotyping Assay

Signal vs. Cycle graph with various fluorescence signals labeled from 1000000 to 10.

Vic (fluorescence) vs. Fam (fluorescence) scatter plot with red and green data points.
DHMC Molecular Diagnostic Technologies

- Gel Electrophoresis Methods
 - Southern blot
 - PCR-based Restriction Fragment Length Polymorphism (RFLP) Analysis

- Real Time PCR
 - Allele specific PCR (dyes)
 - Allelic discrimination probes (Taqman)

- DNA Sequencing
 - Applied Biosystems
 - Beckman Coulter
 - Primera Dx
 - Pyrosequencing

- Array
 - Illumina
 - Luminex Bead Arrays
 - Nanosphere Verigene System
 - Roche AmpliChip
 - Hologic-TWT Invader Assays
Let’s Offer The Test

• Identified need and market
• Identified platform with acceptable performance and TAT
• Adequate staffing and space
• What to do next: (Lab and IT)
 – Validation or verification
 – Update lab handbook/requisitions
 – Billing
 – Reporting
 – Educational materials
FDA Approved Assay

• “In vitro diagnostic devices (IVDs) that include instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or related article intended for use in the diagnosis of disease or other conditions, or in the cure, treatment, or prevention of disease in man.”

• In the U.S., manufacturers are regulated by the FDA’s Center for Devices and Radiological Health (CDRH)
Path to Market for IVD’s

• 510(k) – premarket notification showing equivalency to existing device for safety and effectiveness for intended use – FDA Cleared

• Premarket approval (PMA) – no other existing device (novel agent, new method, analyte poses a major health threat), must establish clinical, relevance – FDA Approved

• Labeled “for in vitro diagnostic use”
Laboratory Developed Tests (LDTs)

- Used for patient management
- Developed in a CLIA certified laboratory
- Consist of:
 - Modified FDA approved or cleared assay
 - Tests not subject to FDA clearance or approval
 - Test systems where performance is not provided by the manufacturer
- Modifications:
 - Test components (extraction, amplification, detection)
 - Procedure
 - Cutoff values
 - Specimen type or collection device (CAP allows for disclaimer if specimen type is rare)
Analyte Specific Reagent (ASR)

- Published in the Code of Federal Regulations in 1997
- To ensure components were made consistently over time (GMP)
- ASRs are **NOT** diagnostic tests
- ASRs are key components: “antibodies, both polyclonal and monoclonal, specific receptor proteins, ligands, nucleic acid sequences, and similar reagents which through specific binding or chemical reaction with substances in a sample, are intended for use in a diagnostic application for identification and quantification of an individual substance or ligand in biological specimens.”
ASR Disclaimer

• Federal Regs require this be added to report: “This test was developed and its performance characteristics determined by [laboratory name]. It has not been cleared or approved by the U.S. Food and Drug Administration.”

• CAP recommends adding: “The FDA has determined that such clearance or approval is not necessary. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 as qualified to perform high complexity clinical laboratory testing.”
Research-Use-Only (RUO)

- Not intended for diagnostic purposes
- Not regulated
- No performance claims or reference values
- Can not bill CMS for tests that use RUOs
- CAP allows RUO reagents to be used as components of tests when FDA approved or cleared or ASR products are not available
- Discretion of lab director
Investigational-Use-Only (IUO)

• Products in phase of development that requires clinical investigational use for submission to FDA

• Only for use in clinical trials
Validation/Verification

• Validation: proving that a procedure or instrument used works as expected and achieves the intended results or performance characteristics.

• Verification: For FDA cleared or approved processes, the lab must demonstrate that it can obtain performance characteristics similar to those claimed by the manufacturer.

• Clinical and Laboratory Standards Institute (CLSI)
DHMC Molecular Test Menu 2011

GENETICS
AAT
aCGH
CF
FII
FRAX
FV
HFE
MTHFR
SRY

HEMEPATH
Bcl-2
Bcr/Abl
Chimerism
FLT3
IgH
JAK2
NPM1
PML-RARA
TCR

IDENTITY
M/F Contam.
Spec. ID
Twinship

IDENTITY

INFECTIOUS
DISEASES
BKV
B. holmesii
B. parapertussis
B. pertussis
GBS
HCV Quant
HCV Geno
HIV Quant
HPV
MRSA
Parvo B19

ONCOLOGY
BRAF
C-Kit
Colon MSI
EGFR
ELM4-ALK1
HER2
KRAS
MGMT
N-Myc
Pancreas miRNA
TTF-1

Personalized
Medicine
UGT1A1
CYP2C9
CYP2C19
CYP2D6
GSTM1
IL28B
VKORC1

9 of 50 (18%) tests are FDA approved/cleared
Verification For FDA Cleared Assays
(Example)

• Accuracy: 20 pos, 50 neg, 90% agreement with reference method
• Precision (Qual): 1 pos for 20 days or duplicates for 10 days (mean ± sd)
• Precision (Quant): 20 data points, 2-3 conc, inter-run, intra-run, between day (<±3 sd)
• Analytical measurement range (reportable range): 5 conc in triplicate, determine upper and lower LOQ
• Normal range (reference interval): 100 values
For Modified FDA, LDT or ASR (Example)

- Accuracy: 50 pos, 100 neg, 90% agreement with reference method
- Precision (Qual): 1 pos for 20 days or duplicates for 10 days (mean ± sd)
- Precision (Quant): 20 data points, 2-3 conc, inter-run, intra-run, between day (≤±3 sd)
- **Analytical sensitivity**: 15-20 samples at low conc (90% agreement)
- **Analytical specificity**: same sample matrix but no target
- Analytical measurement range: 5 conc in triplicate, determine upper and lower LOQ
- Normal range: 100 values
Establishing Performance Specifications for LDTs

• Comparison of methods experiment (accuracy)
• Replication experiment (precision)
• Linearity experiment for quant assays (reportable range, LLOQ)
• LOD experiment (analytical sensitivity)
• Interference/cross reactivity experiment (analytical specificity)
• Reference value study (reference range)
Quality Control

- Assay type: Qual vs Quant
- Amplification controls (NTC, neg, pos)
- Internal control for inhibition
- Extraction control
Hurdles To Implementation

Validation/Verification
Training
Ordering
Reporting
Billing

Central vs decentralized
Turf claims
Hours of operation
Expertise
CLIA vs Non-CLIA lab
Clinical Service

Impact

Clinical presence

Client satisfaction
Deliver the value!
What if............
DHMC Molecular Pathology Laboratory and Translational Research Program

Samantha Allen
Betty Dokus
Susan Gallagher
Carol Hart
Arnold Hawk
Claudine Lefferts, Ph.D.
Joel Lefferts, Ph.D.
Rebecca O’Meara
Elizabeth Reader
Mary Schwab
Heather Steinmetz
Laura Tafe, M.D.
Brian Ward
Eric York